Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
NPJ Digit Med ; 6(1): 96, 2023 May 25.
Article in English | MEDLINE | ID: covidwho-20238487

ABSTRACT

Chatbots have become an increasingly popular tool in the field of health services and communications. Despite chatbots' significance amid the COVID-19 pandemic, few studies have performed a rigorous evaluation of the effectiveness of chatbots in improving vaccine confidence and acceptance. In Thailand, Hong Kong, and Singapore, from February 11th to June 30th, 2022, we conducted multisite randomised controlled trials (RCT) on 2,045 adult guardians of children and seniors who were unvaccinated or had delayed vaccinations. After a week of using COVID-19 vaccine chatbots, the differences in vaccine confidence and acceptance were compared between the intervention and control groups. Compared to non-users, fewer chatbot users reported decreased confidence in vaccine effectiveness in the Thailand child group [Intervention: 4.3 % vs. Control: 17%, P = 0.023]. However, more chatbot users reported decreased vaccine acceptance [26% vs. 12%, P = 0.028] in Hong Kong child group and decreased vaccine confidence in safety [29% vs. 10%, P = 0.041] in Singapore child group. There was no statistically significant change in vaccine confidence or acceptance in the Hong Kong senior group. Employing the RE-AIM framework, process evaluation indicated strong acceptance and implementation support for vaccine chatbots from stakeholders, with high levels of sustainability and scalability. This multisite, parallel RCT study on vaccine chatbots found mixed success in improving vaccine confidence and acceptance among unvaccinated Asian subpopulations. Further studies that link chatbot usage and real-world vaccine uptake are needed to augment evidence for employing vaccine chatbots to advance vaccine confidence and acceptance.

2.
Nat Commun ; 14(1): 2422, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2305911

ABSTRACT

Hong Kong experienced a surge of Omicron BA.2 infections in early 2022, resulting in one of the highest per-capita death rates of COVID-19. The outbreak occurred in a dense population with low immunity towards natural SARS-CoV-2 infection, high vaccine hesitancy in vulnerable populations, comprehensive disease surveillance and the capacity for stringent public health and social measures (PHSMs). By analyzing genome sequences and epidemiological data, we reconstructed the epidemic trajectory of BA.2 wave and found that the initial BA.2 community transmission emerged from cross-infection within hotel quarantine. The rapid implementation of PHSMs suppressed early epidemic growth but the effective reproduction number (Re) increased again during the Spring festival in early February and remained around 1 until early April. Independent estimates of point prevalence and incidence using phylodynamics also showed extensive superspreading at this time, which likely contributed to the rapid expansion of the epidemic. Discordant inferences based on genomic and epidemiological data underscore the need for research to improve near real-time epidemic growth estimates by combining multiple disparate data sources to better inform outbreak response policy.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Hong Kong/epidemiology , SARS-CoV-2/genetics , Disease Outbreaks , Basic Reproduction Number
3.
Lancet Reg Health West Pac ; 1: 100008, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-2268545
5.
Nat Med ; 29(2): 348-357, 2023 02.
Article in English | MEDLINE | ID: covidwho-2185966

ABSTRACT

The SARS-CoV-2 Omicron variant has demonstrated enhanced transmissibility and escape of vaccine-derived immunity. Although first-generation vaccines remain effective against severe disease and death, robust evidence on vaccine effectiveness (VE) against all Omicron infections, irrespective of symptoms, remains sparse. We used a community-wide serosurvey with 5,310 subjects to estimate how vaccination histories modulated risk of infection in infection-naive Hong Kong during a large wave of Omicron BA.2 epidemic in January-July 2022. We estimated that Omicron infected 45% (41-48%) of the local population. Three and four doses of BNT162b2 or CoronaVac were effective against Omicron infection 7 days after vaccination (VE of 48% (95% credible interval 34-64%) and 69% (46-98%) for three and four doses of BNT162b2, respectively; VE of 30% (1-66%) and 56% (6-97%) for three and four doses of CoronaVac, respectively). At 100 days after immunization, VE waned to 26% (7-41%) and 35% (10-71%) for three and four doses of BNT162b2, and to 6% (0-29%) and 11% (0-54%) for three and four doses of CoronaVac. The rapid waning of VE against infection conferred by first-generation vaccines and an increasingly complex viral evolutionary landscape highlight the necessity for rapidly deploying updated vaccines followed by vigilant monitoring of VE.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , BNT162 Vaccine , Vaccine Efficacy , SARS-CoV-2
6.
Nat Med ; 29(3): 579-582, 2023 03.
Article in English | MEDLINE | ID: covidwho-2185965

ABSTRACT

We tracked the effective reproduction number (Rt) of the predominant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant Omicron BF.7 in Beijing in November-December 2022 by fitting a transmission dynamic model parameterized with real-time mobility data to (i) the daily number of new symptomatic cases on 1-11 November (when China's zero-COVID interventions were still strictly enforced) and (ii) the proportion of individuals who participated in online polls on 10-22 December and self-reported to have been test-positive since 1 November. After China's announcement of 20 measures to transition from zero-COVID, we estimated that Rt increased to 3.44 (95% credible interval (CrI): 2.82-4.14) on 18 November and the infection incidence peaked on 11 December. We estimated that the cumulative infection attack rate (IAR; that is, proportion of the population infected since 1 November) in Beijing was 75.7% (95% CrI: 60.7-84.4) on 22 December 2022 and 92.3% (95% CrI: 91.4-93.1) on 31 January 2023. Surveillance programs should be rapidly set up to monitor the evolving epidemiology and evolution of SARS-CoV-2 across China.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Beijing/epidemiology , COVID-19/epidemiology , China/epidemiology , Policy
7.
Emerg Infect Dis ; 28(2): 467-470, 2022 02.
Article in English | MEDLINE | ID: covidwho-1736706

ABSTRACT

We report surveillance conducted in 217 pestiferous rodents in Hong Kong for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We did not detect SARS-CoV-2 RNA but identified 1 seropositive rodent, suggesting exposure to a virus antigenically similar to SARS-CoV-2. Potential exposure of urban rodents to SARS-CoV-2 cannot be ruled out.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Hong Kong/epidemiology , Humans , RNA, Viral/genetics , Rodentia
8.
Nat Commun ; 13(1): 736, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1684024

ABSTRACT

Hong Kong employed a strategy of intermittent public health and social measures alongside increasingly stringent travel regulations to eliminate domestic SARS-CoV-2 transmission. By analyzing 1899 genome sequences (>18% of confirmed cases) from 23-January-2020 to 26-January-2021, we reveal the effects of fluctuating control measures on the evolution and epidemiology of SARS-CoV-2 lineages in Hong Kong. Despite numerous importations, only three introductions were responsible for 90% of locally-acquired cases. Community outbreaks were caused by novel introductions rather than a resurgence of circulating strains. Thus, local outbreak prevention requires strong border control and community surveillance, especially during periods of less stringent social restriction. Non-adherence to prolonged preventative measures may explain sustained local transmission observed during wave four in late 2020 and early 2021. We also found that, due to a tight transmission bottleneck, transmission of low-frequency single nucleotide variants between hosts is rare.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/genetics , COVID-19/transmission , COVID-19/virology , Genomics , Hong Kong/epidemiology , Humans , Public Health , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Travel
9.
Lancet Reg Health West Pac ; 21: 100389, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1665252

ABSTRACT

BACKGROUND: In view of emerging variants of concern (VOCs), we aimed to evaluate the impact of various allocation strategies of COVID-19 vaccines and antiviral such that the pandemic exit strategy could be tailored to risks and preferences of jurisdictions in the East Asia and Pacific region (EAP) to improve its efficiency and effectiveness. METHODS: Vaccine efficacies were estimated from the titre distributions of 50% plaque reduction neutralization test (PRNT50), assuming that PRNT50 titres of primary vaccination decreased by 2-10 folds due to antibody waning and emergence of VOCs, and an additional dose of vaccine would increase PRNT50 titres by 3- or 9-fold. We then used an existing SARS-CoV-2 transmission model to assess the outcomes of vaccine allocation strategies with and without the use of antivirals for symptomatic patients in Japan, Hong Kong, and Vietnam. FINDINGS: Increasing primary vaccination coverage was the most important contributing factor in reducing the total and peak number of COVID-19 hospitalisations, especially when population vaccine coverage or vaccine uptake among older adults was low. Providing antivirals to 50% of symptomatic infections only further reduced total and peak hospitalisations by 10-13%. The effectiveness of an additional dose of vaccine was highly dependent on the immune escape potential of VOCs and antibody waning, but less dependent on the boosting efficacy of the additional dose. INTERPRETATION: Increasing primary vaccination coverage should be prioritised in the design of allocation strategies of COVID-19 vaccines and antivirals against emerging VOCs, such as Omicron, in the EAP region. Heterologous vaccination with any available vaccine as the additional dose could be considered when planning pandemic exit strategies tailored to the circumstances of EAP jurisdictions. FUNDING: Health and Medical Research Fund, General Research Fund, AIR@InnoHK.

10.
Euro Surveill ; 27(2)2022 01.
Article in English | MEDLINE | ID: covidwho-1625399

ABSTRACT

The mRNA vaccine Comirnaty and the inactivated vaccine CoronaVac are both available in Hong Kong's COVID-19 vaccination programme. We observed waning antibody levels in 850 fully vaccinated (at least 14 days passed after second dose) blood donors using ELISA and surrogate virus neutralisation test. The Comirnaty-vaccinated group's (n = 593) antibody levels remained over the ELISA and sVNT positive cut-offs within the first 6 months. The CoronaVac-vaccinated group's (n = 257) median antibody levels began to fall below the cut-offs 4 months after vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , Blood Donors , Hong Kong , Humans , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Inactivated , Vaccines, Synthetic , mRNA Vaccines
11.
Lancet ; 399(10319): 2-3, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1586214
12.
Euro Surveill ; 26(49)2021 12.
Article in English | MEDLINE | ID: covidwho-1566614

ABSTRACT

IntroductionThe SARS-CoV-2 lineages carrying the amino acid change D614G have become the dominant variants in the global COVID-19 pandemic. By June 2021, all the emerging variants of concern carried the D614G mutation. The rapid spread of the G614 mutant suggests that it may have a transmission advantage over the D614 wildtype.AimOur objective was to estimate the transmission advantage of D614G by integrating phylogenetic and epidemiological analysis.MethodsWe assume that the mutation D614G was the only site of interest which characterised the two cocirculating virus strains by June 2020, but their differential transmissibility might be attributable to a combination of D614G and other mutations. We define the fitness of G614 as the ratio of the basic reproduction number of the strain with G614 to the strain with D614 and applied an epidemiological framework for fitness inference to analyse SARS-CoV-2 surveillance and sequence data.ResultsUsing this framework, we estimated that the G614 mutant is 31% (95% credible interval: 28-34) more transmissible than the D614 wildtype. Therefore, interventions that were previously effective in containing or mitigating the D614 wildtype (e.g. in China, Vietnam and Thailand) may be less effective against the G614 mutant.ConclusionOur framework can be readily integrated into current SARS-CoV-2 surveillance to monitor the emergence and fitness of mutant strains such that pandemic surveillance, disease control and development of treatment and vaccines can be adjusted dynamically.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics/prevention & control , Phylogeny , Spike Glycoprotein, Coronavirus/genetics
13.
Philos Trans A Math Phys Eng Sci ; 380(2214): 20210127, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1528263

ABSTRACT

During the COVID-19 pandemic, more than ever, data science has become a powerful weapon in combating an infectious disease epidemic and arguably any future infectious disease epidemic. Computer scientists, data scientists, physicists and mathematicians have joined public health professionals and virologists to confront the largest pandemic in the century by capitalizing on the large-scale 'big data' generated and harnessed for combating the COVID-19 pandemic. In this paper, we review the newly born data science approaches to confronting COVID-19, including the estimation of epidemiological parameters, digital contact tracing, diagnosis, policy-making, resource allocation, risk assessment, mental health surveillance, social media analytics, drug repurposing and drug development. We compare the new approaches with conventional epidemiological studies, discuss lessons we learned from the COVID-19 pandemic, and highlight opportunities and challenges of data science approaches to confronting future infectious disease epidemics. This article is part of the theme issue 'Data science approaches to infectious disease surveillance'.


Subject(s)
COVID-19 , Pandemics , Contact Tracing , Data Science , Humans , Pandemics/prevention & control , SARS-CoV-2
14.
Philos Trans A Math Phys Eng Sci ; 380(2214): 20210124, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1528261

ABSTRACT

Prolonged school closure has been adopted worldwide to control COVID-19. Indeed, UN Educational, Scientific and Cultural Organization figures show that two-thirds of an academic year was lost on average worldwide due to COVID-19 school closures. Such pre-emptive implementation was predicated on the premise that school children are a core group for COVID-19 transmission. Using surveillance data from the Chinese cities of Shenzhen and Anqing together, we inferred that compared with the elderly aged 60 and over, children aged 18 and under and adults aged 19-59 were 75% and 32% less susceptible to infection, respectively. Using transmission models parametrized with synthetic contact matrices for 177 jurisdictions around the world, we showed that the lower susceptibility of school children substantially limited the effectiveness of school closure in reducing COVID-19 transmissibility. Our results, together with recent findings that clinical severity of COVID-19 in children is lower, suggest that school closure may not be ideal as a sustained, primary intervention for controlling COVID-19. This article is part of the theme issue 'Data science approach to infectious disease surveillance'.


Subject(s)
COVID-19 , Aged , Child , Humans , Middle Aged , SARS-CoV-2 , Schools
16.
Lancet Public Health ; 6(9): e674-e682, 2021 09.
Article in English | MEDLINE | ID: covidwho-1351894

ABSTRACT

BACKGROUND: Since the emergence of the COVID-19 pandemic in late 2019, various public health and social measures (PHSMs) have been used to suppress and mitigate the spread of SARS-CoV-2. With mass vaccination programmes against COVID-19 being rolled out in many countries in early 2021, we aimed to evaluate to what extent travel restrictions and other PHSMs can be relaxed without exacerbating the local and global spread of COVID-19. METHODS: We adapted an existing age-structured susceptible-infectious-removed model of SARS-CoV-2 transmission dynamics that can be parameterised with country-specific age demographics and contact patterns to simulate the effect of vaccination and PHSM relaxation on transmission. We varied assumptions by age-specific susceptibility and infectiousness, vaccine uptake, contact patterns, and age structures. We used Hong Kong as a case study and assumed that, before vaccination, the population is completely susceptible to SARS-CoV-2 infection. We applied our model to 304 jurisdictions (27 countries and 277 sub-national administrative regions from eight countries). We assumed that PHSMs have suppressed the effective reproductive number (Re) to fall between 1·0 and 9·0 locally before the commencement of vaccination programmes. We evaluated the levels of PHSMs that should be maintained during the roll-out of COVID-19 vaccination to avoid a large local outbreak of COVID-19, with different assumptions about vaccine efficacy, vaccination coverage, and travel restrictions. We assumed that the maximum capacity of the health system, in terms of daily hospital admissions, is 0·005% of the population size. FINDINGS: At vaccine efficacy of 0·80 in reducing susceptibility to SARS-CoV-2 infection, 0·50 in reducing SARS-CoV-2 infectivity, and 0·95 in reducing symptomatic COVID-19 diseases, vaccination coverage would have to be 100% for all individuals aged 30 or older to avoid an outbreak, when relaxing PHSMs, that would overload the local health-care system, assuming a pre-vaccination Re of 2·5. Testing and quarantine of at least 5 days would have to be maintained for inbound travellers to minimise the risk of reintroducing a local outbreak until high vaccination coverages are attained locally and overseas in most countries. INTERPRETATION: Gradual relaxation of PHSMs should be carefully planned during the roll-out of vaccination programmes, and easing of travel restrictions weighed against risk of reintroducing outbreaks, to avoid overwhelming health systems and minimise deaths related to COVID-19. FUNDING: Health and Medical Research Fund and the General Research Fund.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization Programs/organization & administration , Pandemics/prevention & control , Public Health/legislation & jurisprudence , Travel/legislation & jurisprudence , COVID-19/epidemiology , COVID-19 Testing , Hong Kong/epidemiology , Humans , Models, Theoretical , Quarantine
17.
Nat Med ; 27(3): 388-395, 2021 03.
Article in English | MEDLINE | ID: covidwho-1319039

ABSTRACT

Epidemic nowcasting broadly refers to assessing the current state by understanding key pathogenic, epidemiologic, clinical and socio-behavioral characteristics of an ongoing outbreak. Its primary objective is to provide situational awareness and inform decisions on control responses. In the event of large-scale sustained emergencies, such as the COVID-19 pandemic, scientists need to constantly update their aims and analytics with respect to the rapidly evolving emergence of new questions, data and findings in order to synthesize real-time evidence for policy decisions. In this Perspective, we share our views on the functional aims, rationale, data requirements and challenges of nowcasting at different stages of an epidemic, drawing on the ongoing COVID-19 experience. We highlight how recent advances in the computational and laboratory sciences could be harnessed to complement traditional approaches to enhance the scope, timeliness, reliability and utility of epidemic nowcasting.


Subject(s)
COVID-19/epidemiology , Communicable Diseases, Emerging/epidemiology , Epidemics , Forecasting/methods , Communicable Diseases, Emerging/diagnosis , Disease Outbreaks/history , Epidemics/history , History, 21st Century , Humans , Pandemics , Reproducibility of Results
18.
Nat Commun ; 12(1): 1501, 2021 03 08.
Article in English | MEDLINE | ID: covidwho-1123130

ABSTRACT

Digital proxies of human mobility and physical mixing have been used to monitor viral transmissibility and effectiveness of social distancing interventions in the ongoing COVID-19 pandemic. We develop a new framework that parameterizes disease transmission models with age-specific digital mobility data. By fitting the model to case data in Hong Kong, we are able to accurately track the local effective reproduction number of COVID-19 in near real time (i.e., no longer constrained by the delay of around 9 days between infection and reporting of cases) which is essential for quick assessment of the effectiveness of interventions on reducing transmissibility. Our findings show that accurate nowcast and forecast of COVID-19 epidemics can be obtained by integrating valid digital proxies of physical mixing into conventional epidemic models.


Subject(s)
Basic Reproduction Number , COVID-19/epidemiology , Epidemiological Monitoring , Models, Theoretical , COVID-19/transmission , Forecasting , Hong Kong/epidemiology , Humans , Pandemics , Travel
19.
Lancet Public Health ; 6(1): e12-e20, 2021 01.
Article in English | MEDLINE | ID: covidwho-1072035

ABSTRACT

BACKGROUND: Countries have restricted international arrivals to delay the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These measures carry a high economic and social cost, and might have little effect on COVID-19 epidemics if there are many more cases resulting from local transmission compared with imported cases. Our study aims to investigate the extent to which imported cases contribute to local transmission under different epidemic conditions. METHODS: To inform decisions about international travel restrictions, we calculated the ratio of expected COVID-19 cases from international travel (assuming no travel restrictions) to expected cases arising from internal spread, expressed as a proportion, on an average day in May and September, 2020, in each country. COVID-19 prevalence and incidence were estimated using a modelling framework that adjusts reported cases for under-ascertainment and asymptomatic infections. We considered different travel scenarios for May and September, 2020: an upper bound with estimated travel volumes at the same levels as May and September, 2019, and a lower bound with estimated travel volumes adjusted downwards according to expected reductions in May and September, 2020. Results were interpreted in the context of local epidemic growth rates. FINDINGS: In May, 2020, imported cases are likely to have accounted for a high proportion of total incidence in many countries, contributing more than 10% of total incidence in 102 (95% credible interval 63-129) of 136 countries when assuming no reduction in travel volumes (ie, with 2019 travel volumes) and in 74 countries (33-114) when assuming estimated 2020 travel volumes. Imported cases in September, 2020, would have accounted for no more than 10% of total incidence in 106 (50-140) of 162 countries and less than 1% in 21 countries (4-71) when assuming no reductions in travel volumes. With estimated 2020 travel volumes, imported cases in September, 2020, accounted for no more than 10% of total incidence in 125 countries (65-162) and less than 1% in 44 countries (8-97). Of these 44 countries, 22 (2-61) had epidemic growth rates far from the tipping point of exponential growth, making them the least likely to benefit from travel restrictions. INTERPRETATION: Countries can expect travellers infected with SARS-CoV-2 to arrive in the absence of travel restrictions. Although such restrictions probably contribute to epidemic control in many countries, in others, imported cases are likely to contribute little to local COVID-19 epidemics. Stringent travel restrictions might have little impact on epidemic dynamics except in countries with low COVID-19 incidence and large numbers of arrivals from other countries, or where epidemics are close to tipping points for exponential growth. Countries should consider local COVID-19 incidence, local epidemic growth, and travel volumes before implementing such restrictions. FUNDING: Wellcome Trust, UK Foreign, Commonwealth & Development Office, European Commission, National Institute for Health Research, Medical Research Council, and Bill & Melinda Gates Foundation.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Communicable Diseases, Imported/epidemiology , Epidemics , Internationality , COVID-19/prevention & control , Communicable Diseases, Imported/prevention & control , Humans , Models, Theoretical , Travel/legislation & jurisprudence
20.
Euro Surveill ; 26(1)2021 01.
Article in English | MEDLINE | ID: covidwho-1067621

ABSTRACT

Two new SARS-CoV-2 lineages with the N501Y mutation in the receptor-binding domain of the spike protein spread rapidly in the United Kingdom. We estimated that the earlier 501Y lineage without amino acid deletion Δ69/Δ70, circulating mainly between early September and mid-November, was 10% (6-13%) more transmissible than the 501N lineage, and the 501Y lineage with amino acid deletion Δ69/Δ70, circulating since late September, was 75% (70-80%) more transmissible than the 501N lineage.


Subject(s)
COVID-19/transmission , COVID-19/virology , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Genetic Markers , Genetic Variation , Genome, Viral , Humans , Phylogeny , SARS-CoV-2/pathogenicity , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL